Consider this fact, some light waves like radio are large enough that a lot of matter is essentially invisible to their propagation; the radio waves just pass right by without any interactions. This becomes a similar problem when we try and measure such small quantum phenomena like zero-point energy. The quantum energy could be so small that they’re invisible to our detectors, but are in fact still there - the two scales simple cannot interact in a measurable way. So, there’d like still be some quantum energy, just less and less until our detectors could not interact with the incredibly small quanta for measurement.
So with a sufficiently small volume of space, we would have an actual nothing again? Or the foam can go infinitely small?
Consider this fact, some light waves like radio are large enough that a lot of matter is essentially invisible to their propagation; the radio waves just pass right by without any interactions. This becomes a similar problem when we try and measure such small quantum phenomena like zero-point energy. The quantum energy could be so small that they’re invisible to our detectors, but are in fact still there - the two scales simple cannot interact in a measurable way. So, there’d like still be some quantum energy, just less and less until our detectors could not interact with the incredibly small quanta for measurement.