Honestly it seems like a no-brainer to me to put a solar panel on the roof of electric cars to increase their action radius, so I figured there’s probably one or more good reasons why they don’t.
Also, I acknowledge that a quick google could answer the question, but with the current state of google I don’t want to read AI bullshit. I want an actual answer, and I bet there will be some engineers eager to explain the issues.
For comparison, my rooftop solar array, with around 16 full-sized panels (~6kwp) produces just under 2 miles per hour in my electric car (around 3.3kwh/mi). Or in real life, takes about 2 fully sunny days to produce the power to charge the car.
What kind of ev are you driving? That’s insanely high energy usage.
My EV gets about 6km per kwh (around 4 miles)
You get 4 miles per kwh and they get 3.3 and you call that insanely high? The 2.5-4 mile to kwh is really standard for EVs. I don’t think the 3.3 is outside of the norm at all.
Fish reversed the numbers. It should have been miles per kWh
I don’t know anything about EV efficiency, but the rates are inverse, so they are drastically different.
Fish gets 3.3kwh/mile
Peacock gets 4 miles/kwh or 0.25kwh/mile
Oh I see that error now. I guess I just assumed from context his 6kwh panels generated 2 miles per hour. I get the confusion though
I’m still a little confused, wouldn’t 6kwh provide roughly 12 to 24 miles of driving range?
They mentioned their car uses 3.3 kwh per mile. With their solar setup they can generate around 6hwh per hour. Meaning they can generate roughly 2 miles every hour of sunlight.
Right, which is why people are confused. Fish likely meant 3.3 miles / kWh, but that comes out to 20 miles for one hour of charge. But the fact they said just under 2 miles of range actually correlates with their 3.3kWh/mile statement, but no one has ever heard of an EV with efficiency that terrible.