It can look dumb, but I always had this question as a kid, what physical principles would prevent this?
You’re pushing the atoms on your end, which in turn push the next atoms, which push the next ones and so on up to the atoms at the end of the rod which push the hand of your friend on the moon.
As it so happens the way the atoms push each other is electromagnetism, in other words sending photons (same thing light is made of) to each other but these photons are not at visible wavelengths so you don’t see them as light.
So pushing the rod is just sending a wave down the rod of atoms pushing each other with the gaps between atoms being bridged using photons, so it will never be faster than the speed at which photons can travel in vacuum (it’s actually slower because part of the movement of that wave is not the lightspeed-travelling photons bridging the gaps between atoms but the actual atoms moving and atoms have mass so they cannot travel as fast as the speed of light).
In normal day to day life the rods are far too short for us to notice the delay between the pushing the rod on one end and the rod pushing something on the other end.
Very well put.
Thank you for this. Everything above it was just people saying the stick would move slower than light, nothing about why!
As it so happens the way the atoms push each other is electromagnetism, in other words sending photons (same thing light is made of) to each other but these photons are not at visible wavelengths so you don’t see them as light.
Wat? I strongly believe you are not correct. Which is to say, I think you are talking out of your arse entirely. If you push on a thing you peturb the electron structure of the material. These peturbations propagate as vibratory modes modeled as phonons.
While technically some of this energy is emitted as thermal radiation that is not primarily where it goes. And phonons themselves propagate at a slower rate than the speed of light, a significantly slower rate. Like a million times slower.
And how do you think the information that an electrically charged particle is moving reaches other electrically charged particles…
My mistake, that’s why sound travels at the speed of light.
It’s just not useful to talk about this at the level of the standard model. We are interested in the bulk behaviour of condensed matter, the fact of the matter is that you will not be able to tell that the other end of the stick has been touched until the pressure wave reaches the end. It doesn’t matter if individual force carriers are moving at the speed of light because they are not moving in a single straight line. You are interested in the net velocity.
Wikipedia isn’t a textbook. Don’t overcomplicate shit and mislead people because you’ve spent a few hours browsing particle physics articles stoned.
I very explicitly said the whole thing is slower than the speed of light (much slower even) and even pointed out why: at the most basic of levels, the way charged particles push each other without contact is the electromagnetic force, meaning photons, but the actual particles still have to move and unlike photons they do have mass so the result is way slower than the speed of light.
To disprove the idea that a push on a solid object can travel faster than the speed of light (which is what the OP put forward), pointing out that at its most basic level the whole thing relies on actually photons which travel at the speed of light, will do it.
There was never any lower limit specified in my response because there is no need to go into that to disprove a theory about the upper limit being beyond a certain point. (Which makes that ironic statement of yours about the speed of sound-waves quite peculiar as it is mathematically and logically unrelated to what I wrote)
Going down into the complexity of the actual process, whilst interesting, isn’t going to answer the OPs question in an accessible and reasonably short manner using language that most people can understand.
- Aceticon BcS Applied Bullshit
LOL!
Reduced to name calling.
Good try, shame you don’t have the chops (as the way you express yourself gave away very early on)
I don’t know why you are pretending to have physics knowledge when you very obviously do not have an education in it. What do you get out of pretending to be an expert on the internet? There’s no reward for it.
I enjoyed a lot of the discussion in the comments
Perhaps also worth pointing out that the speed of light is that exact speed, because light itself hits a speed limit.
As far as we know, light has no mass, so if it is accelerated in any way, it should immediately have infinite acceleration and therefore infinite speed (this is simplifying too much by using a classical physics formula, but basically it’s like this:
a = f/m = f/0 = ∞
). And well, light doesn’t go at infinite speed, presumably because it hits that speed limit, which is somehow inherent to the universe.That speed limit is referred to as the “speed of causality” and we assume it to apply to everything. That’s also why other massless things happen to travel at the speed of causality/light, too, like for example gravitational waves. Well, and it would definitely also apply to that pole.
Here’s a video of someone going into much more depth on this: https://www.pbs.org/video/pbs-space-time-speed-light-not-about-light/
Actually, the thing that applies to the pole is the speed of sound (of the pole material), which is the speed the atoms in the pole move at. Not even close to the speed of light.
Correct answer is here.
Yeah, everyone else had already answered that, which felt like we’re picking apart that specific thought experiment, even though there is actually a much more fundamental reason why it won’t work.
I think relativity demonstrates that light does have mass?
They might not have “rest mass” but they do have mass!
The eclipse experiment proved it, solar sails whilst hypothetical demonstrate it.
Photons don’t have mass, but they do have momentum.
How does that work?
Relativistic mass is not helpful to our everyday understanding of mass, it’s more helpful to discuss momentum, like the other commenter pointed out
For anyone looking for other cool ideas or videos about speed of light etc
What Is The Speed of Dark? - Vsauce (13m:31s)
- Cool older vsauce video going over shadows and light speed etc
The Faster-Than-Light Guillotine - Because Science (w/ Kyle Hill) (14m:19s)
- Basically goes over the “FTL Scissor action” that a lot of people have covered but he does a good segment covering it.
Here’s a video that actually kinda answers the question:
The compression on the end of the stick wouldn’t travel faster than the speed of sound in the stick making it MUCH slower than light.
But… But… The stick is unfoldable!
You said unfoldable not non-compressible. Your fault.
Go find a 30’ stick and let us know if you can point it at the moon.
I predict we’ll have FTL travel before we can invent a stick that’s “unfoldable”.
A wooden stick is pretty much unfordable in an unaltered state Or a glass stick
Glass easily bends
But will it fold?
What about the mass of that stick? Inertial doesn’t care for your little silly games.
Neither do the two gravity wells the stick spans. And the earth and moon are moving relative to each other, someone would probably get their head knocked off by that stick. Before it eventually falls to the earth with quite a bit of force because earth’s gravity well will win. Then it’ll eventually settle into a giant teeter totter, assuming it is rigid enough to survive the impact.
Move a sheet up and down rapidly
You can see the wave travel across it
It would work, but only in the impossible world where you have a perfectly rigid unbreakable stick. But such an object cannot exist in this universe.
Pick up a solid rigid object near you. Anything will do, a coffee cup, a comb, a water bottle, anything. Pick it up from the top and lift it vertically. Observe it.
It seems as though the whole object moves instantaneously, does it not? It seems that the bottom of the object starts moving at the exact same instant as the top. But it is actually not the case. Every material has a certain elasticity to it. Everything deforms slightly under the tiniest of forces. Even a solid titanium rod deforms a little bit from the weight of a feather placed upon it. And this lack of perfect rigidity means that there is a very, very slight delay from when you start lifting the top of the object to when the bottom of it starts moving.
For small objects that you can manipulate with your hands, this delay is imperceptible to your senses. But if you observed an object being lifted with very precise scientific equipment, you could actually measure this delay. Motion can only transfer through objects at a finite speed. Specifically, it can only move at the speed of sound through the material. Your perfectly rigid object would have an infinite speed of sound within it. So yes, it would instantly transfer that motion. But with any real material, the delay wouldn’t just be noticeable, but comically large.
Imagine this stick were made of steel. The speed of sound in steel is about 5120 m/s. The distance to the Moon is about 400,000 km. Converting and dividing shows that it would actually take about 22 hours for a pulse like that to travel through a steel pole that long. (Ignoring how the steel pole would be supported.)
So in fact, you are both right and wrong. You are correct for the object you describe. A perfectly rigid object would be usable as a tool of FTL communication. But such an object simply cannot exist in this universe.
that makes sense, i forgot that pushing something is basically like creating a sound wave on it ^^’ thank you :)
Great explanation, thank you!
A perfectly rigid object would be usable as a tool of FTL communication
Would it though? I feel like the theoretical limit is still c
Yes, the speed of sound in an object is how fast neighboring atoms can react to each other, and not only is that information (therefore limited to C already) but specifically it’s the electric field caused by the electrons that keep atoms certain distances from each other and push each other around. And changes in the electric/magnetic fields are famously carried by photons (light) specifically - so even in bulk those changes move at the speed of light at most
Yes, that’s the point. The limit c denies the possibility of a perfectly rigid body existing physically. It can only exist as a thought experiment.
What about using c++ or rust?
That’ll anger the universe’s devs who will then bully you.
Username checks out.
As an object becomes “closer” to a perfectly rigid object it becomes denser, would such an object eventually collapse onto itself and become a black hole? Or is there another limit to how dense/rigid an object can be?
Seems likely. The most rigid materially known, (or at least theorized) is nuclear pasta.. Nuclear pasta only forms inside neutron stars, stellar objects that are the last stage of matter before matter gives up entirely and collapses into a black hole.
It’s even wilder when you take the concept of ridgidity and transfer of energy out of the equation and just think in terms of pure information propagating though a light cone. Rigidity itself is a function of information.
Matter is made of atoms. Things are only truly rigid in the small scales we deal with usually.
If your stick is unbreakable and unavoidable you have already broken laws of physics anyway
If your stick is unbreakable and unavoidable you have already broken laws of physics anyway
You have it backwards: if your stick is unavoidable, NOT HAVING IT is the impossible thing.
In carrot vs stick terms, this is the most unfortunate fellow: he who can’t avoid the stick.
Autocorrected from unfoldable. This is what I get for occasionally browsing on a shitty Amazon tablet. At least it was cheap to the point of being almost free.
So have to ask what a solid is to answer this question.
Sticks are quite complex, so lets consider a simpler solid: an elementally pure iron rod.
You can imagine said rod as if it were a fixed array of crystalline atomic cores surrounded by a jelly-like substance. In this ‘jellium’ model the atomic cores have a positive charge, they are the protons and neutrons, and the jelly has a negative charge. The jelly is the wavefunction that represents the electron structure in bulk. If that makes no sense, congrats on knowing your limits.
You’ve probably seen the more modern model of an atom where there’s a nucleus and around it is an electron fuzz with discrete energy levels. Or if you’ve studied at uni strange geometry representing a threshold in probability of finding the electron/s there on a given measurement (if not familiar under certain conditions reality kinda unfocuses it’s eyes and things that we often think of as points become volumes of possible effect). This is a good model of a single atom, but when we bring atoms together they change each other’s properties and the result is that these density functions (the weird electron cloud/shape things) start to blur together.
In our iron rod the electrons delocalize sufficiently we can kinda think of it as a weird jelly. A real stick is more complex, but can kinda be thought of as a stack of smaller jelly treats packed against each other.
When you push on the rod you’re mashing the jelly of your hand into the jelly of the rod, this causes a shockwave that begins to spread, it propagates like a ripple in a skipping rope or a bounce on a trampoline. But since it’s moving ‘amount of electron like properties here’. That makes some areas more negatively charged which drags the positively charged atom cores slowly after it. It moves much slower than the speed of light as we aren’t considering individual electrons which can move energy between them via photons, but the propagation of a disturbance in the collective arrangement of many that are tightly linked (we say coupled).
We can’t imagine a stick that is perfectly rigid because we would be proposing a kind of matter that does not exist, one which isn’t made of a lot of fuzzy electron jelly stuff but something else entirely. We can imagine matter where the jelly is very stiff, and consequently less energy goes into wobbling it all about and the squish moves forward very fast but that speed is still much slower than light because of this collective behaviour.
Alright now eli5? Everything is jelly?
Everything soft and slow like your brain yes.
Everything bends when you move it, usually to such a small degree that you can’t perceive it. It’s impossible to have a truly “rigid” material that would be required for the original post because of this. The atoms in a solid object don’t all move simultaneously, otherwise swinging a bat would be causing FTL propagation itself. The movement needs to propagate through the atoms, the more rigid the object the faster this happens, but it is never instantaneous. You can picture the atoms like a lattice of pool balls connected to each other with springs. The more rigid the material, the stiffer the springs, but there will always be at least a little flex, even if you need to zoom in and slow-mo to see it.
Sorta. I found this video a while back that helped me understand it. Pay attention to the clock hands part and how the movement is affected by how fast information is traveling in them. It’s basically the same idea as the stick but a different direction.
This is an excellently written response.
It’s pretty hand wavy. The question: why is the speed of sound so slow? (which is essentially isomorphic to this one) is pretty hard to answer. I can’t do the the maths to derive it anymore haha.
There are similar things about light slowdown during refraction and stuff.
It’s just much easier to view certain bulk phenomena as waves in homogeneous material but it can be very unsatisfactory. Hence all the bullshit artists in this thread talking about speed limits, the standard model, and time dilation. For some reason “it just be that way ok?” feels more satisfying if the thing you’re asserting seems more fundamental, but it doesn’t really make stuff clearer.
Not going to disagree with that, but you’re responding to somebody who obviously has no background in physics, and it strikes me as a reasonable balance between conceptual (“hand wavy”) and detailed enough.
I used to run physics labs at uni so I’d hope I was as alright teacher still. Never made it as a real physicist though ;_;
Well, it made me feel smart. So either you’re a good teacher, and helped me put into words and solidify something I already understood more abstractly. Or you’re a terrible teacher, and have led me further astray.
Pretty rough dichotomy there. I would not want to be an educator.
it wouldn’t work, because there is no unbreakable, unfoldable stick. the stick will have flex, and the force transmitted will occur much more slowly through the molecular chain of the stick than light’s travel time.
reality is much more woobly and spongy than you know.
Okay for a thought experiment what if it’s a perfect element incapable of that?
“Ok, well, humans can’t just teleport wherever they want, but what if they could?”
well, then they could, I guess.
Like some sort of material that has a speed of sound close or equal to the speed of light? Then yeah, it would move about the same speed as the speed of light.
Long winded video about it:
‘Are solid objects really “solid”?’ (go-to 7:30)
That was a really good video!
Thank you for sharing–that was a really neat demonstration, and I enjoyed seeing all the troubleshooting as well. Will definitely be subscribing and checking out more of their videos!