A big issue that a lot of these tech companies seem to have is that they don’t understand what people want; they come up with an idea and then shove it into everything. There are services that I have actively stopped using because they started cramming AI into things; for example I stopped dual-booting with Windows and became Linux-only.
AI is legitimately interesting technology which definitely has specialized use-cases, e.g. sorting large amounts of data, or optimizing strategies within highly restrained circumstances (like chess or go). However, 99% of what people are pushing with AI these days as a member of the general public just seems like garbage; bad art and bad translations and incorrect answers to questions.
I do not understand all the hype around AI. I can understand the danger; people who don’t see that it’s bad are using it in place of people who know how to do things. But in my teaching for example I’ve never had any issues with students cheating using ChatGPT; I semi-regularly run the problems I assign through ChatGPT and it gets enough of them wrong that I can’t imagine any student would be inclined to use ChatGPT to cheat multiple times after their grade the first time comes in. (In this sense, it’s actually impressive technology - we’ve had computers that can do advanced math highly accurately for a while, but we’ve finally developed one that’s worse at math than the average undergrad in a gen-ed class!)
I understand some of the hype. LLMs are pretty amazing nowadays (though closedai is unethical af so don’t use them).
I need to program complex cryptography code for university. Claude sonnet 3.5 solves some of the challenges instantly.
And it’s not trivial stuff, but things like “how do I divide polynomials, where each coefficient of that polynomial is an element of GF(2^128).” Given the context (my source code), it adds it seamlessly, writes unit tests, and it just works. (That is important for AES-GCM, the thing TLS relies on most of the time .)
Besides that, LLMs are good at what I call moving words around. Writing cute little short stories in fictional worlds given some info material, or checking for spelling, or re-formulating a message into a very diplomatic nice message, so on.
On the other side, it’s often complete BS shoehorning LLMs into things, because “AI cool word line go up”.
I’ve ran some college hw through 4o just to see and it’s remarkably good at generating proofs for math and algorithms. Sometimes it’s not quite right but usually on the right track to get started.
In some of the busier classes I’m almost certain students do this because my hw grades would be lower than the mean and my exam grades would be well above the mean.
The answer is that it’s all about “growth”. The fetishization of shareholders has reached its logical conclusion, and now the only value companies have is in growth. Not profit, not stability, not a reliable customer base or a product people will want. The only thing that matters is if you can make your share price increase faster than the interest on a bond (which is pretty high right now).
To make share price go up like that, you have to do one of two things; show that you’re bringing in new customers, or show that you can make your existing customers pay more.
For the big tech companies, there are no new customers left. The whole planet is online. Everyone who wants to use their services is using their services. So they have to find new things to sell instead.
And that’s what “AI” looked like it was going to be. LLMs burst onto the scene promising to replace entire industries, entire workforces. Huge new opportunities for growth. Lacking anything else, big tech went in HARD on this, throwing untold billions at partnerships, acquisitions, and infrastructure.
And now they have to show investors that it was worth it. Which means they have to produce metrics that show people are paying for, or might pay for, AI flavoured products. That’s why they’re shoving it into everything they can. If they put AI in notepad then they can claim that every time you open notepad you’re “engaging” with one of their AI products. If they put Recall on your PC, every Windows user becomes an AI user. Google can now claim that every search is an AI interaction because of the bad summary that no one reads. The point is to show “engagement”, “interest”, which they can then use to promise that down the line huge piles of money will fall out of this pinata.
The hype is all artificial. They need to hype these products so that people will pay attention to them, because they need to keep pretending that their massive investments got them in on the ground floor of a trillion dollar industry, and weren’t just them setting huge piles of money on fire.
The answer is that it’s all about “growth”. The fetishization of shareholders has reached its logical conclusion, and now the only value companies have is in growth. Not profit, not stability, not a reliable customer base or a product people will want. The only thing that matters is if you can make your share price increase faster than the interest on a bond (which is pretty high right now).
As you can see, this can’t go on indefinitely. And also such unpleasantries are well known after every huge technological revolution. Every time eventually resolved, and not in favor of those on the quick buck train.
It’s still not a dead end. The cycle of birth, growth, old age, death, rebirth from the ashes and so on still works. It’s only the competitive, evolutionary, “fast” model has been killed - temporarily.
These corporations will still die unless they make themselves effectively part of the state.
BTW, that’s what happened in Germany described by Marx, so despite my distaste for marxism, some of its core ideas may be locally applicable with the process we observe.
It’s like a worldwide gold rush IMHO, but not even really worldwide. There are plenty of solutions to be developed and sold in developing countries in place of what fits Americans and Europeans and Chinese and so on, but doesn’t fit the rest. Markets are not exhausted for everyone. Just for these corporations because they are unable to evolve.
Lacking anything else, big tech went in HARD on this, throwing untold billions at partnerships, acquisitions, and infrastructure.
If only Sun survived till now, I feel they would have good days. What made them fail then would make them more profitable now. They were planning too far ahead probably, and were too careless with actually keeping the company afloat.
My point is that Sun could, unlike these corporations, function as some kind of “the phone company”, or “the construction company”, etc. Basically what Microsoft pretended to be in the 00s. They were bad with choosing the right kind of hype, but good with having a comprehensive vision of computing. Except that vision and its relation to finances had schizoaffective traits.
Same with DEC.
The point is to show “engagement”, “interest”, which they can then use to promise that down the line huge piles of money will fall out of this pinata.
Well. It’s not unprecedented for business opportunities to dry out. It’s actually normal. What’s more important, the investors supporting that are the dumber kind, and the investors investing in more real things are the smarter kind. So when these crash (for a few years hunger will probably become a real issue not just in developing countries when that happens), those preserving power will tend to be rather insightful people.
If only Sun survived till now, I feel they would have good days
The problem is a lot of what Sun brought to the industry is now in the Linux arena. If Sun survived, would Linux have happened? With such a huge development infrastructure around Linux, would Sun really add value?
I was a huge fan of Sun also, they revolutionized the industry far above their footprint. However their approach seemed more research or academic at times, and didn’t really work with their business model. Red Hat figured out a balance where they could develop opensource while making enough to support their business. The Linux world figured out a different balance where the industry is above and beyond individual companies and doesn’t require profit
The problem is a lot of what Sun brought to the industry is now in the Linux arena. If Sun survived, would Linux have happened? With such a huge development infrastructure around Linux, would Sun really add value?
Linux is not better than Solaris. It was, however, circumstantially more affordable, more attractive, and more exciting than Solaris at the same time. They’ve made a lot of strategic mistakes, but those were in the context of having some vision.
I mean this to say that the “huge development infrastructure around Linux” is bigger, but much less efficient than that of any of BSDs, and than that of Solaris in the past. Linux people back then would take pride in ability to assemble bigger resources, albeit with smaller efficiency, and call that “the cathedral vs the bazaar”, where Linux is the bazaar. Well, by now one can see that the bazaar approach make development costs bigger long-term.
IMHO if Sun didn’t make those mistakes, Solaris would be the most prestigious Unix and Unix-like system, but those systems would be targeted by developers similarly. So Linux would be alive, but not much more or less popular than FreeBSD. I don’t think they’d need Solaris to defeat all other Unix systems. After all, in early 00s FreeBSD had SVR4 binary compatibility code, similarly to its Linux compatibility code, which is still there and widely used. Probably commercial software distributed in binaries would be compiled for that, but would run on all of them. Or maybe not.
It’s hard to say.
But this
The Linux world figured out a different balance where the industry is above and beyond individual companies and doesn’t require profit
is wrong, everything about Linux that keeps going now is very commercial. Maybe 10 years ago one could say it’s not all about profit.
That’s like saying your body is not a protein driven mechanism (cause there are many other things involved), but has room for proteins.
If somebody tears out half of your internal organs, you die.
If profit-driven companies stop participating in Linux, Linux dies. Today’s Linux. Linux of year 1999 wouldn’t.
That’s how even gifts can be the needle to control you.
I mean, why is this even a point of contention. BSDs played safe in terms of politics, Linux gambled by not considering the dangers. BSDs grew more slowly, Linux took the bank. But now Linux is confined by the decisions made back then. BSDs are more free.
I know I’m an enthusiast, but can I just say I’m excited about NotebookLLM? I think it will be great for documenting application development. Having a shared notebook that knows the environment and configuration and architecture and standards for an application and can answer specific questions about it could be really useful.
“AI Notepad” is really underselling it. I’m trying to load up massive Markdown documents to feed into NotebookLLM to try it out. I don’t know if it’ll work as well as I’m hoping because it takes time to put together enough information to be worthwhile in a format the AI can easily digest. But I’m hopeful.
That’s not to take away from your point: the average person probably has little use for this, and wouldn’t want to put in the effort to make it worthwhile. But spending way too much time obsessing about nerd things is my calling.
Hell, notepad is the wrong tool for every use case, it exists in case you’ve broken things so thoroughly on windows that you need to edit a file to fix it. It’s the text editor of last resort, a dumb simple file editor always there when you need it.
Adding any feature (except possibly a hex editor) makes it worse at its only job.
I had no idea notepad + AI was a thing. It sounds farcical, so I assumed wrongly it was a reference to NotebookLLM. My mistake. I shouldn’t have assumed OP was just being dismissive.
Then either you replied with your first post to the wrong post or you misread “windows putting AI into notepad” as notebookLLM? Because if not there is nothing obvious connecting your post to the parent
I did at least explain what my vision is and why I wanted it which… doesn’t sound anything like Notepad, I think.
Might be, but the person you responded to wrote about windows putting AI into notepad, so everyone assumed you were responding to that and not writing about something that was not even mentioned
I stand corrected. Thank you. I hadn’t heard about that. Notepad has always been no frills, and I can’t see integrating AI with that over just using AI, but they are and it seems silly, I agree.
From a nerdy perspective, LLMs are actually very cool. The problem is that they’re grotesquely inefficient. That means that, practically speaking, whatever cool use you come up with for them has to work in one of two ways; either a user runs it themselves, typically very slowly or on a pretty powerful computer, or it runs as a cloud service, in which case that cloud service has to figure out how to be profitable.
Right now we’re not being exposed to the true cost of these models. Everyone is in the “give it out cheap / free to get people hooked” stage. Once the bill comes due, very few of these projects will be cool enough to justify their costs.
Like, would you pay $50/month for NotebookLM? However good it is, I’m guessing it’s probably not that good. Maybe it is. Maybe that’s a reasonable price to you. It’s probably not a reasonable price to enough people to sustain serious development on it.
That’s the problem. LLMs are cool, but mostly in a “Hey this is kind of neat” way. They do things that are useful, but not essential, but they do so at an operating cost that only works for things that are essential. You can’t run them on fun money, but you can’t make a convincing case for selling them at serious money.
I’ll pay a bit more for the next model of my phone that promises on device ai, or actually already did. We’ll see if that turns into something useful.
So far the bits and pieces I’ve played with are not generative ai, but natural language processing and inferencing. The improved features definitely make my phone a more useful piece of hardware, but not revolutionary
Totally agree. It comes down to how often is this thing efficient for me if I pay the true cost. At work, yes it would save over $50/mo if it works well. At home it would be difficult to justify that cost, but I’d also use it less so the cost could be lower. I currently pay $50/mo between ChatGPT and NovelAI (and the latter doen’t operate at a loss) so it’s worth a bit to me just to nerd out over it. It certainly doesn’t save me money except in the sense that it’s time and money I don’t spend on some other endeavor.
My old video card is painfully slow for local LLM, but I dream of spending for a big card that runs closer to cloud speeds even if the quality is lower, for easier tasks.
Being able to summarize and answer questions about a specific corpus of text was a use case I was excited for even knowing that LLMs can’t really answer general questions or logically reason.
But if Google search summaries are any indication they can’t even do that. And I’m not just talking about the screenshots people post, this is my own experience with it.
Maybe if you could run the LLM in an entirely different way such that you could enter a question and then it tells you which part of the source text statistically correlates the most with the words you typed; instead of trying to generate new text. That way in a worse case scenario it just points you to a part of the source text that’s irrelevant instead of giving you answers that are subtly wrong or misleading.
Even then I’m not sure the huge computational requirements make it worth it over ctrl-f or a slightly more sophisticated search algorithm.
Even the success case is a failure. I’ve had several instances where Google returned a nice step by step how to answer a user’s questions, correctly, but I can’t forward the link and trust they’ll see the same thing
you could enter a question and then it tells you which part of the source text statistically correlates the most with the words you typed; instead of trying to generate new text. That way in a worse case scenario it just points you to a part of the source text that’s irrelevant instead of giving you answers that are subtly wrong or misleading.
Isn’t this what the best search engines were doing before the AI summaries?
The main problem now is the proliferation of AI “sources” that are really just keyword stuffed junk websites that take over the first page of search results. And that’s apparently a difficult or unprofitable problem for the search algorithms to solve.
That’s what Google was trying to do, yeah, but IMO they weren’t doing a very good job of it (really old Google search was good if you knew how to structure your queries, but then they tried to make it so you could ask plain English questions instead of having to think about what keywords you were using and that ruined it IMO). And you also weren’t able to run it against your own documents.
LLMs on the other hand are so good at statistical correlation that they’re able to pass the Turing test. They know what words mean in context (in as much they “know” anything) instead of just matching keywords and a short list of synonyms. So there’s reason to believe that if you were able to see which parts of the source text the LLM considered to be the most similar to a query that could be pretty good.
There is also the possibility of running one locally to search your own notes and documents. But like I said I’m not sure I want to max out my GPU to do a document search.
Well an example of something I think it could solve would be: “I’m trying to set this application up to run locally. I’m getting this error message. Here’s my configuration files. What is not set up correctly, or if that’s not clear, what steps can I take to provide more helpful information?”
ChatGPT is always okay at that as long as you have everything set up according to the most common scenarios, but it tells you a lot of things that don’t apply or are wrong in the specific case. I would like to get answers that are informed by our specific setup instructions, security policies, design standards, etc. I don’t want to have to repeat “this is a Java spring boot application running on GCP integrating with redis on docker… blah blah blah”.
I can’t say whether it’s worth it yet, but I’m hopeful. I might do the same with ChatGPT and custom GPTs, but since I use my personal account for that, it’s on very shaky ground to upload company files to something like that, and I couldn’t share with the team anyway. It’s great to ask questions that don’t require specific knowledge, but I think I’d be violating company policy to upload anything.
A big issue that a lot of these tech companies seem to have is that they don’t understand what people want; they come up with an idea and then shove it into everything. There are services that I have actively stopped using because they started cramming AI into things; for example I stopped dual-booting with Windows and became Linux-only.
AI is legitimately interesting technology which definitely has specialized use-cases, e.g. sorting large amounts of data, or optimizing strategies within highly restrained circumstances (like chess or go). However, 99% of what people are pushing with AI these days as a member of the general public just seems like garbage; bad art and bad translations and incorrect answers to questions.
I do not understand all the hype around AI. I can understand the danger; people who don’t see that it’s bad are using it in place of people who know how to do things. But in my teaching for example I’ve never had any issues with students cheating using ChatGPT; I semi-regularly run the problems I assign through ChatGPT and it gets enough of them wrong that I can’t imagine any student would be inclined to use ChatGPT to cheat multiple times after their grade the first time comes in. (In this sense, it’s actually impressive technology - we’ve had computers that can do advanced math highly accurately for a while, but we’ve finally developed one that’s worse at math than the average undergrad in a gen-ed class!)
I understand some of the hype. LLMs are pretty amazing nowadays (though closedai is unethical af so don’t use them).
I need to program complex cryptography code for university. Claude sonnet 3.5 solves some of the challenges instantly.
And it’s not trivial stuff, but things like “how do I divide polynomials, where each coefficient of that polynomial is an element of GF(2^128).” Given the context (my source code), it adds it seamlessly, writes unit tests, and it just works. (That is important for AES-GCM, the thing TLS relies on most of the time .)
Besides that, LLMs are good at what I call moving words around. Writing cute little short stories in fictional worlds given some info material, or checking for spelling, or re-formulating a message into a very diplomatic nice message, so on.
On the other side, it’s often complete BS shoehorning LLMs into things, because “AI cool word line go up”.
I’ve ran some college hw through 4o just to see and it’s remarkably good at generating proofs for math and algorithms. Sometimes it’s not quite right but usually on the right track to get started.
In some of the busier classes I’m almost certain students do this because my hw grades would be lower than the mean and my exam grades would be well above the mean.
The answer is that it’s all about “growth”. The fetishization of shareholders has reached its logical conclusion, and now the only value companies have is in growth. Not profit, not stability, not a reliable customer base or a product people will want. The only thing that matters is if you can make your share price increase faster than the interest on a bond (which is pretty high right now).
To make share price go up like that, you have to do one of two things; show that you’re bringing in new customers, or show that you can make your existing customers pay more.
For the big tech companies, there are no new customers left. The whole planet is online. Everyone who wants to use their services is using their services. So they have to find new things to sell instead.
And that’s what “AI” looked like it was going to be. LLMs burst onto the scene promising to replace entire industries, entire workforces. Huge new opportunities for growth. Lacking anything else, big tech went in HARD on this, throwing untold billions at partnerships, acquisitions, and infrastructure.
And now they have to show investors that it was worth it. Which means they have to produce metrics that show people are paying for, or might pay for, AI flavoured products. That’s why they’re shoving it into everything they can. If they put AI in notepad then they can claim that every time you open notepad you’re “engaging” with one of their AI products. If they put Recall on your PC, every Windows user becomes an AI user. Google can now claim that every search is an AI interaction because of the bad summary that no one reads. The point is to show “engagement”, “interest”, which they can then use to promise that down the line huge piles of money will fall out of this pinata.
The hype is all artificial. They need to hype these products so that people will pay attention to them, because they need to keep pretending that their massive investments got them in on the ground floor of a trillion dollar industry, and weren’t just them setting huge piles of money on fire.
As you can see, this can’t go on indefinitely. And also such unpleasantries are well known after every huge technological revolution. Every time eventually resolved, and not in favor of those on the quick buck train.
It’s still not a dead end. The cycle of birth, growth, old age, death, rebirth from the ashes and so on still works. It’s only the competitive, evolutionary, “fast” model has been killed - temporarily.
These corporations will still die unless they make themselves effectively part of the state.
BTW, that’s what happened in Germany described by Marx, so despite my distaste for marxism, some of its core ideas may be locally applicable with the process we observe.
It’s like a worldwide gold rush IMHO, but not even really worldwide. There are plenty of solutions to be developed and sold in developing countries in place of what fits Americans and Europeans and Chinese and so on, but doesn’t fit the rest. Markets are not exhausted for everyone. Just for these corporations because they are unable to evolve.
If only Sun survived till now, I feel they would have good days. What made them fail then would make them more profitable now. They were planning too far ahead probably, and were too careless with actually keeping the company afloat.
My point is that Sun could, unlike these corporations, function as some kind of “the phone company”, or “the construction company”, etc. Basically what Microsoft pretended to be in the 00s. They were bad with choosing the right kind of hype, but good with having a comprehensive vision of computing. Except that vision and its relation to finances had schizoaffective traits.
Same with DEC.
Well. It’s not unprecedented for business opportunities to dry out. It’s actually normal. What’s more important, the investors supporting that are the dumber kind, and the investors investing in more real things are the smarter kind. So when these crash (for a few years hunger will probably become a real issue not just in developing countries when that happens), those preserving power will tend to be rather insightful people.
The problem is a lot of what Sun brought to the industry is now in the Linux arena. If Sun survived, would Linux have happened? With such a huge development infrastructure around Linux, would Sun really add value?
I was a huge fan of Sun also, they revolutionized the industry far above their footprint. However their approach seemed more research or academic at times, and didn’t really work with their business model. Red Hat figured out a balance where they could develop opensource while making enough to support their business. The Linux world figured out a different balance where the industry is above and beyond individual companies and doesn’t require profit
Linux is not better than Solaris. It was, however, circumstantially more affordable, more attractive, and more exciting than Solaris at the same time. They’ve made a lot of strategic mistakes, but those were in the context of having some vision.
I mean this to say that the “huge development infrastructure around Linux” is bigger, but much less efficient than that of any of BSDs, and than that of Solaris in the past. Linux people back then would take pride in ability to assemble bigger resources, albeit with smaller efficiency, and call that “the cathedral vs the bazaar”, where Linux is the bazaar. Well, by now one can see that the bazaar approach make development costs bigger long-term.
IMHO if Sun didn’t make those mistakes, Solaris would be the most prestigious Unix and Unix-like system, but those systems would be targeted by developers similarly. So Linux would be alive, but not much more or less popular than FreeBSD. I don’t think they’d need Solaris to defeat all other Unix systems. After all, in early 00s FreeBSD had SVR4 binary compatibility code, similarly to its Linux compatibility code, which is still there and widely used. Probably commercial software distributed in binaries would be compiled for that, but would run on all of them. Or maybe not.
It’s hard to say.
But this
is wrong, everything about Linux that keeps going now is very commercial. Maybe 10 years ago one could say it’s not all about profit.
The point is the industry is not a profit driven entity, but has room for many profit driven entities.
That’s like saying your body is not a protein driven mechanism (cause there are many other things involved), but has room for proteins.
If somebody tears out half of your internal organs, you die.
If profit-driven companies stop participating in Linux, Linux dies. Today’s Linux. Linux of year 1999 wouldn’t.
That’s how even gifts can be the needle to control you.
I mean, why is this even a point of contention. BSDs played safe in terms of politics, Linux gambled by not considering the dangers. BSDs grew more slowly, Linux took the bank. But now Linux is confined by the decisions made back then. BSDs are more free.
I know I’m an enthusiast, but can I just say I’m excited about NotebookLLM? I think it will be great for documenting application development. Having a shared notebook that knows the environment and configuration and architecture and standards for an application and can answer specific questions about it could be really useful.
“AI Notepad” is really underselling it. I’m trying to load up massive Markdown documents to feed into NotebookLLM to try it out. I don’t know if it’ll work as well as I’m hoping because it takes time to put together enough information to be worthwhile in a format the AI can easily digest. But I’m hopeful.
That’s not to take away from your point: the average person probably has little use for this, and wouldn’t want to put in the effort to make it worthwhile. But spending way too much time obsessing about nerd things is my calling.
You’re using the wrong tool.
Hell, notepad is the wrong tool for every use case, it exists in case you’ve broken things so thoroughly on windows that you need to edit a file to fix it. It’s the text editor of last resort, a dumb simple file editor always there when you need it.
Adding any feature (except possibly a hex editor) makes it worse at its only job.
… I don’t use Notepad. For anything. Hell, I don’t even use Windows.
Not sure where the wires got crossed here.
Yes as others said, the op mentioned notepad and you said notebookllm.
I thought you were talking about notepad and it’s new ai features.
I had no idea notepad + AI was a thing. It sounds farcical, so I assumed wrongly it was a reference to NotebookLLM. My mistake. I shouldn’t have assumed OP was just being dismissive.
Then either you replied with your first post to the wrong post or you misread “windows putting AI into notepad” as notebookLLM? Because if not there is nothing obvious connecting your post to the parent
I don’t think anyone is putting AI into Notepad. It reads to me like a response to NotebookLLM but maybe I was wrong.
I did at least explain what my vision is and why I wanted it which… doesn’t sound anything like Notepad, I think.
Well, you think wrong: https://blogs.windows.com/windows-insider/2024/11/06/new-ai-experiences-for-paint-and-notepad-begin-rolling-out-to-windows-insiders/
Might be, but the person you responded to wrote about windows putting AI into notepad, so everyone assumed you were responding to that and not writing about something that was not even mentioned
I stand corrected. Thank you. I hadn’t heard about that. Notepad has always been no frills, and I can’t see integrating AI with that over just using AI, but they are and it seems silly, I agree.
From a nerdy perspective, LLMs are actually very cool. The problem is that they’re grotesquely inefficient. That means that, practically speaking, whatever cool use you come up with for them has to work in one of two ways; either a user runs it themselves, typically very slowly or on a pretty powerful computer, or it runs as a cloud service, in which case that cloud service has to figure out how to be profitable.
Right now we’re not being exposed to the true cost of these models. Everyone is in the “give it out cheap / free to get people hooked” stage. Once the bill comes due, very few of these projects will be cool enough to justify their costs.
Like, would you pay $50/month for NotebookLM? However good it is, I’m guessing it’s probably not that good. Maybe it is. Maybe that’s a reasonable price to you. It’s probably not a reasonable price to enough people to sustain serious development on it.
That’s the problem. LLMs are cool, but mostly in a “Hey this is kind of neat” way. They do things that are useful, but not essential, but they do so at an operating cost that only works for things that are essential. You can’t run them on fun money, but you can’t make a convincing case for selling them at serious money.
I’ll pay a bit more for the next model of my phone that promises on device ai, or actually already did. We’ll see if that turns into something useful.
So far the bits and pieces I’ve played with are not generative ai, but natural language processing and inferencing. The improved features definitely make my phone a more useful piece of hardware, but not revolutionary
Totally agree. It comes down to how often is this thing efficient for me if I pay the true cost. At work, yes it would save over $50/mo if it works well. At home it would be difficult to justify that cost, but I’d also use it less so the cost could be lower. I currently pay $50/mo between ChatGPT and NovelAI (and the latter doen’t operate at a loss) so it’s worth a bit to me just to nerd out over it. It certainly doesn’t save me money except in the sense that it’s time and money I don’t spend on some other endeavor.
My old video card is painfully slow for local LLM, but I dream of spending for a big card that runs closer to cloud speeds even if the quality is lower, for easier tasks.
Nvidia’s new motto: “An A100 at every home”
Being able to summarize and answer questions about a specific corpus of text was a use case I was excited for even knowing that LLMs can’t really answer general questions or logically reason.
But if Google search summaries are any indication they can’t even do that. And I’m not just talking about the screenshots people post, this is my own experience with it.
Maybe if you could run the LLM in an entirely different way such that you could enter a question and then it tells you which part of the source text statistically correlates the most with the words you typed; instead of trying to generate new text. That way in a worse case scenario it just points you to a part of the source text that’s irrelevant instead of giving you answers that are subtly wrong or misleading.
Even then I’m not sure the huge computational requirements make it worth it over ctrl-f or a slightly more sophisticated search algorithm.
Even the success case is a failure. I’ve had several instances where Google returned a nice step by step how to answer a user’s questions, correctly, but I can’t forward the link and trust they’ll see the same thing
Multiple times now, I’ve seen people post AI summaries of articles on Lemmy which miss out really, really important points.
Isn’t this what the best search engines were doing before the AI summaries?
The main problem now is the proliferation of AI “sources” that are really just keyword stuffed junk websites that take over the first page of search results. And that’s apparently a difficult or unprofitable problem for the search algorithms to solve.
That’s what Google was trying to do, yeah, but IMO they weren’t doing a very good job of it (really old Google search was good if you knew how to structure your queries, but then they tried to make it so you could ask plain English questions instead of having to think about what keywords you were using and that ruined it IMO). And you also weren’t able to run it against your own documents.
LLMs on the other hand are so good at statistical correlation that they’re able to pass the Turing test. They know what words mean in context (in as much they “know” anything) instead of just matching keywords and a short list of synonyms. So there’s reason to believe that if you were able to see which parts of the source text the LLM considered to be the most similar to a query that could be pretty good.
There is also the possibility of running one locally to search your own notes and documents. But like I said I’m not sure I want to max out my GPU to do a document search.
Well an example of something I think it could solve would be: “I’m trying to set this application up to run locally. I’m getting this error message. Here’s my configuration files. What is not set up correctly, or if that’s not clear, what steps can I take to provide more helpful information?”
ChatGPT is always okay at that as long as you have everything set up according to the most common scenarios, but it tells you a lot of things that don’t apply or are wrong in the specific case. I would like to get answers that are informed by our specific setup instructions, security policies, design standards, etc. I don’t want to have to repeat “this is a Java spring boot application running on GCP integrating with redis on docker… blah blah blah”.
I can’t say whether it’s worth it yet, but I’m hopeful. I might do the same with ChatGPT and custom GPTs, but since I use my personal account for that, it’s on very shaky ground to upload company files to something like that, and I couldn’t share with the team anyway. It’s great to ask questions that don’t require specific knowledge, but I think I’d be violating company policy to upload anything.
We are encouraged to use NotebookLLM, however.