A tiny radioactive battery could keep your future phone running for 50 years::A glowing horizon for phones

    • pelya@lemmy.world
      link
      fedilink
      English
      arrow-up
      35
      ·
      7 months ago

      At this moment, 1 gram of radioactive Nickel-63 costs around 4,000 USD. Nickel-63 isotope does not occur in nature, it is obtained by irradiating Nickel-62 inside a nuclear reactor.

      • hglman@lemmy.ml
        link
        fedilink
        English
        arrow-up
        5
        arrow-down
        1
        ·
        7 months ago

        The world needs breeder reactors anyways, build out a lot of gen 4 plants and make Nickle-63 to boot.

    • LibertyLizard@slrpnk.net
      link
      fedilink
      English
      arrow-up
      19
      ·
      7 months ago

      What happens when the casing get punctured? When you mass produce these devices these things will happen.

      • Justin@lemmy.jlh.name
        link
        fedilink
        English
        arrow-up
        12
        ·
        7 months ago

        Probably the same as with tritium lumes. Only dangerous if you swallow the unshielded nickel.

          • lolcatnip@reddthat.com
            link
            fedilink
            English
            arrow-up
            10
            arrow-down
            2
            ·
            7 months ago

            What gave you the idea that swallowing a small amount of mildly radioactive material is fatal?

            • Transporter Room 3@startrek.website
              link
              fedilink
              English
              arrow-up
              11
              arrow-down
              2
              ·
              7 months ago

              Man, I figured the joke was obvious but I guess not.

              “tiny amount of radioactive material whose radiation stopped by thin plastics is a literal death sentence” is, I thought, pretty clear hyperbole.

              • lolcatnip@reddthat.com
                link
                fedilink
                English
                arrow-up
                5
                ·
                7 months ago

                A lot of people are really irrationally afraid of anything involving radiation. I mistook you for one of them.

                • deranger@sh.itjust.works
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  edit-2
                  7 months ago

                  Inhaling a beta emitter would be catastrophic in your lungs. The concern is absolutely warranted and it’s significantly more dangerous than lithium ion. I’m not afraid of nuclear power but this is stupid.

                • Transporter Room 3@startrek.website
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  7 months ago

                  No worries. Glow it up, let’s get some extreme energy density up in this bitch. I went for nuke in the old days where I enlisted in the military.

                  I have a healthy respect for radiation. That’s why I leave handling the good stuff to the professionals.

                  I’ve actually got some small isotope samples in a lockbox from an old highschool demonstration lab for Geiger counters. No Geiger counter though yet. I haven’t even opened it since I got it to check the contents were intact.

          • SkyNTP@lemmy.ml
            link
            fedilink
            English
            arrow-up
            10
            arrow-down
            2
            ·
            7 months ago

            I mean so is drinking a gallon of bleach. Fortunately, there’s a pretty simple preventative measure for both:

            Don’t do it?

      • bitwolf@lemmy.one
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        7 months ago

        Surely the battery itself would have sufficient protection on top of the devices chassis offering protection.

        I can’t say a Lithium Ion battery leaking in the body would bode very either.

    • GoodEye8@lemm.ee
      link
      fedilink
      English
      arrow-up
      40
      arrow-down
      2
      ·
      7 months ago

      No offense but it’s a “I wasn’t paying attention in high school physics” comment. It being beta decay with a half-life of 100 years should already indicate it’s relatively safe. In fact someone else in this thread already already added the references showing how safe it is. If it’s safe enough to power a pacemaker it’s safe enough to sit in your phone that sits your pocket.

      Personally I think that battery would have much bigger issues than safety, such as power requirements which are much harder to control with nuclear decay. Also obviously the device itself deprecating before the battery because tech will definitely advance a lot in 50 years, I imagine after a decade the phone will be useless. And finally the pricing considering Ni-63 doesn’t occur in nature which means you need a specific process to create the materials necessary for the batter.

        • GoodEye8@lemm.ee
          link
          fedilink
          English
          arrow-up
          7
          ·
          edit-2
          7 months ago

          I’ll concede, useless was a bit harsh. Let’s say “no longer fit for the average user” considering the average lifespan of a mobile phone is 2-4 years and a company doing software and security updates for a decade is very rare.

          You are very much the exception here.

      • Imgonnatrythis@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        11
        arrow-down
        15
        ·
        7 months ago

        That’s a silly comparison. You’re not dropping your pacemaker down escalators or throwing it the trash when the screen breaks, and middle schoolers aren’t dissambling them with butter knives. You’re not throwing them out every few years. Please teach me more about high school physics though you smug sob.

        • GoodEye8@lemm.ee
          link
          fedilink
          English
          arrow-up
          5
          ·
          edit-2
          7 months ago

          Most current phones use lithium ion batteries that can combust or explode in your pocket if tampered or damaged, but you don’t seem to be worried about that. You only seem to be worried about the battery in the article because the only thing you remember about radiation from your high school physics is “radiation bad”. Had you paid more attention in school you wouldn’t need my smug ass correcting you.

        • DrRatso@lemmy.ml
          link
          fedilink
          English
          arrow-up
          4
          arrow-down
          1
          ·
          7 months ago

          You are just moving goalposts here. None of these scenarios are particularly relevant anyway. Even if the phone shell cracked, the battery casing would be enough to shield from the radiation. And what does throwing the phone in the trash have to do with keeping it in your pocket.

  • terminhell@lemmy.dbzer0.com
    link
    fedilink
    English
    arrow-up
    21
    arrow-down
    3
    ·
    7 months ago

    Nuclear power at small scale is already in use in devices. Some medical devices, smoke detectors etc. As long as there is proper shielding, the enclosure is robust enough, and the overall device is made easily serviceable, I’m all for it. I can understand the fear sentiment of anything flagged as radioactive, but radiation is all around us already. Idk, but the less we can ditch super toxic and explosive lithium the better.

    • Person264@lemmings.world
      link
      fedilink
      English
      arrow-up
      14
      ·
      7 months ago

      The radioactive source isn’t used for power in smoke detectors, it’s used to detect smoke. What small scale devices use radioactivity actually for power?

    • ColeSloth@discuss.tchncs.de
      link
      fedilink
      English
      arrow-up
      8
      ·
      7 months ago

      Here’s the real issue with the bs fluff title and complete fabrication of what these can be used for. It says in the article the battery makes 100 microwatts at 3v. Well that’s an insanely small wattage. Your phone requires like 2 to 10 watts when youre on it. Regular watts.

      One single watt is 1,000,000 microwatts. It would take 10,000 of these radioactive 50 year batteries ran together in parallel for just a watt of power. You’d need like 100,000 of them in your phone to cover all power requirements.

    • CucumberFetish@lemm.ee
      link
      fedilink
      English
      arrow-up
      3
      ·
      7 months ago

      The issue is not the radioactivity, it’s the power density. Per the article, this is ~24x smaller than an average phone battery, but can supply only 100uW.

      I have a relatively conservative phone use, and on average, my phone uses 450mW. That means that you’d need 4500 of those batteries in your phone. But the battery would also need to cover the power usage peaks, which are multiple times higher than the average power consumption.

    • Siegfried@lemmy.world
      link
      fedilink
      English
      arrow-up
      4
      ·
      7 months ago

      He got it right in a lot of aspects, partially because he didnt gave many details about certain stuff, but I remember a pretty good description of a nuclear powered e reader… if I remember it correctly, the nuclear part was a tiny nuclear reactor though

      • sin_free_for_00_days@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        0
        arrow-down
        1
        ·
        7 months ago

        Seemed like all the writing of that era was under the spell of nuclear power. I remember thinking “wtf?” to a nuclear-powered desk side trash incinerator in one of Asimov’s books. Maybe Foundation.

  • Boozilla@lemmy.world
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    1
    ·
    7 months ago

    Remember when folks wore watches with radioactive paint on them? Good times.

      • yuriy@lemmy.world
        link
        fedilink
        English
        arrow-up
        12
        ·
        7 months ago

        Yeah, unfortunately most of the danger fell on the (usually female) factory workers who painted the radium on. Fun fact, we do absolutely still use radioactive shit to make watches glow today, it’s just much less dangerous and sealed in tiny vials. Also it’s a gas that won’t eventually flake and turn into super fine particulate, like the radium paints of yore.

    • grayman@lemmy.world
      link
      fedilink
      English
      arrow-up
      3
      ·
      7 months ago

      It was more a problem of licking the little brushes than wearing the teeny bit on the wrist.

  • hark@lemmy.world
    link
    fedilink
    English
    arrow-up
    8
    ·
    7 months ago

    I’ve heard of these kinds of batteries before and it’d be cool to have long-running electronics, but would these produce enough power?

    • CucumberFetish@lemm.ee
      link
      fedilink
      English
      arrow-up
      6
      ·
      edit-2
      7 months ago

      They do, if you give them enough room. And if you are born into an oil family.

      The power density is about 0.01125m³ per watt. A high end smartphone (11w of peak power) with a body size similar to Galaxy s23 ultra, would be almost 10 meters thick.

      • xthexder@l.sw0.com
        link
        fedilink
        English
        arrow-up
        1
        ·
        7 months ago

        To be fair, it only needs to cover the phone’s average power draw if you put in a supercapacitor or small conventional battery.

        But there’s another problem… if I understand how this works correctly, for a 1W battery, the radioactive element must be outputting AT LEAST 1W of radiation energy at all times, whether it’s being consumed as electricity or not. Ideally that’s all trapped inside as heat in a best case scenario, but having to cool your battery while it’s not in use is kind of a deal breaker for anything more than milliwatts (or it will have to have a heatsink as big as the battery)

  • indigomirage@lemmy.ca
    link
    fedilink
    English
    arrow-up
    6
    arrow-down
    1
    ·
    edit-2
    7 months ago

    What could possibly go wrong…?

    (FWIW - I am referring to the potential for misuse at scale)

  • phoenixz@lemmy.ca
    link
    fedilink
    English
    arrow-up
    2
    ·
    7 months ago

    Battery scam #364256373

    I’m seeing at least 5 of these per week now, can we PLEASE stop this bullshit?

    Also, batteries from radioactive elements is one of the stupider ideas that has been floated around, sounds about at the same level as the thorium powered car.

    It would be so nice if tech sites could write about actual tech and not CGI bullshit dreamed up by a guy who really isn’t going to scam you, he just needs a little bit of start up capital for his Ferrari.