

We can’t afford to make any of this. We don’t have the money for the compute required or to pay for the lawyers to make the law work for us
I don’t think this is entirely true; yeah, large foundational models have training costs that are beyond the reach of individuals, but plenty can be done that is not, or can be done by a relatively small organization. I can’t find a direct price estimate for Apertus, and it looks like they used their own hardware, but it’s mentioned they used ten million gpu hours, and GH200 gpus; I found a source online claiming a rental cost of $1.50 per hour for that hardware, so I think the cost of training this could be loosely estimated to be something around 20 million dollars.
That is a lot of money if you are one person, but it’s an order of magnitude smaller than the settlements of billions of dollars being paid so far by the biggest AI companies for their hasty unauthorized use of copyrighted materials. It’s easy to see how copyright and legal costs could potentially be the bottleneck here preventing smaller actors from participating.
It should benefit the people, so it needs to change. It needs to be “expanded” (I wouldn’t call it that, rather “modified” but I’ll use your word) in that it currently only protects the wealthy and binds the poor. It should be the opposite.
How would that even work though? Yes, copyright currently favors the wealthy, but that’s because the whole concept of applying property rights to ideas inherently favors the wealthy. I can’t imagine how it could be the opposite even in theory, but in practice, it seems clear that any legislation codifying limitations on use and compensation for AI training will be drafted by lobbyists of large corporate rightsholders, at the obvious expense of everyone with an interest in free public ownership and use of AI technology.















That’s literally what the comment above it was doing too though. It’s a very common anti-AI argument to appeal to social proof.