• 3 Posts
  • 2.97K Comments
Joined 1 year ago
cake
Cake day: August 9th, 2023

help-circle

  • There’s more money investors wanting invest in wind, solar, or hydroelectric projects, than there are projects to invest it. The limiting factor isn’t money.

    Let’s say you have money to invest in the energy sector. You take a look at nuclear and find that while the regulatory environment is very high, it isn’t insurmountable. The Department of Energy has shown a willingness to sign off on new nuclear projects as long as you do your homework. It’s a lot, but it can be done.

    Next, you look at the history of building projects. The baseline for time to build is 5 years, but everyone knows this is a lie. That thing isn’t getting done for at least 7 years, often more like 10. Its budget will expand by about the same proportion. You won’t see a dime of profit until it’s done. If it can’t raise the money from either yourself or other investors to cover the shortfall, then it’s useless and your entire investment will be wiped out.

    The Westinghouse AP1000 design was hoped to get around some of the boutique engineering challenges of building nuclear in the past. It did not.

    If you instead invest into solar or wind, you’ll find some regulatory hurdles. Mainly from the local NIMBYs. The hookup agreements with the utility companies take some doing, but it’s not outrageous. Looking at the construction side of things, these projects are pretty much turnkey. They don’t require any specialized engineering (not the way nuclear does). They tend to get done on time and within budget.

    This, too has been studied. The average cost overrun of a solar megaproject is 1%. For wind, 13%, and it’s 20% for water. Want to know what it is for nuclear? It’s right near the top of the list at 120%. The only megaprojects on the list that do worse are Olympic Games and nuclear storage.

    With numbers like that, it’s no wonder investors are dumping their money into solar and wind.


  • There are guard rails, but their nature is different.

    They can control every single major position in the federal government. Doesn’t matter, because they’re all working at cross purposes. See, fascism gives the appearance of a united front because it rallies around a singular leader, but it’s not. Everyone below that leader is trying to stab each other in the back in order to be in the good graces of the leader.

    That alone would tie them in knots of their own creation, but it’s possible to exploit it further. Publicize the consequences far and wide. Getting Trump to yell at his own staff isn’t difficult, and he’ll fire them and replace them with someone even dumber. With Congress being close to split, It’s even possible cabinet positions empty out with no replacements for the rest of the Administration.


  • I actually tend to agree that it’s not going to be as bad as it looks right now. It’s never as bad as the pessimists think it’s going to be.

    However, the pessimists think it’s going to be very, very bad. It’s only going to end being being merely bad.

    You’re not wrong that their lack of competence will get in the way. However, I think you are wrong in how that’s going to play out. The first attempts are going to be a boondoggle. They will still hurt countless people. The strategy at that point should be to wrap them up dealing with the consequences of that boondoggle so that they can’t accomplish much else until we can build real working class power.

    But that second part doesn’t happen on its own.
















  • Thousands of people buying rooftop panels was never going to be the best way towards a Water/Wind/Solar (WWS) future. Fitting panels to the roof has to work around the roof geometry and obstructions like vents. That makes every job a custom job. It also means thousands of small inverters rather than a few big ones.

    Compare that to setting up thousands of panels on racks in a field. As long as it’s relatively open and flat, you just slap those babies down. You haul in a few big inverters which are often built right into shipping containers that can just be placed on site, hooked up, and left there. Batteries need inverters, too, so if your project includes some storage, then you only need one set of inverters.

    I get the feeling of independence from the system that solar panels on the roof gives people, but it’s just not economically the best way to go. The insanely cheap dollars per MWh of solar is only seen when deploying them on a mass scale. That means roofs of commercial/industrial buildings or bigger.


  • The batteries needed are a lot less than you might think. Solar doesn’t work at night and the wind doesn’t always blow, but we have tons of regional weather data about how they overlap. From that, it’s possible to calculate the maximum historical lull where neither are providing enough. You then add enough storage to handle double that time period, and you’re good.

    Getting 95% coverage with this is a very achievable goal. That last 5% takes a lot more effort, but getting to 95% would be a massive reduction in CO2 output.